click to view more

Classical Beam Theories of Structural Mechanics

by [Öchsner, Andreas]

$104.92

add to favourite
  • In Stock - Ship in 24 hours with Free Online tracking.
  • FREE DELIVERY by Tuesday, May 06, 2025
  • 24/24 Online
  • Yes High Speed
  • Yes Protection
Last update:

Description

This book provides a systematic and thorough overview of the classical bending members based on the theory for thin beams (shear-rigid) according to Euler-Bernoulli, and the theories for thick beams (shear-flexible) according to Timoshenko and Levinson. The understanding of basic, i.e., one-dimensional structural members, is essential in applied mechanics. A systematic and thorough introduction to the theoretical concepts for one-dimensional members keeps the requirements on engineering mathematics quite low, and allows for a simpler transfer to higher-order structural members. The new approach in this textbook is that it treats single-plane bending in the x-y plane as well in the x-z plane equivalently and applies them to the case of unsymmetrical bending. The fundamental understanding of these one-dimensional members allows a simpler understanding of thin and thick plate bending members.

Partial differential equations lay the foundation to mathematically describe the mechanical behavior of all classical structural members known in engineering mechanics. Based on the three basic equations of continuum mechanics, i.e., the kinematics relationship, the constitutive law, and the equilibrium equation, these partial differential equations that describe the physical problem can be derived. Nevertheless, the fundamental knowledge from the first years of engineering education, i.e., higher mathematics, physics, materials science, applied mechanics, design, and programming skills, might be required to master this topic.

Last updated on

Product Details

  • Springer Brand
  • Jun 15, 2022 Pub Date:
  • 9783030760373 ISBN-13:
  • 3030760375 ISBN-10:
  • 200.0 pages Paperback
  • English Language
  • 9.25 in * 0.46 in * 6.1 in Dimensions:
  • 1 lb Weight: